nature cities

Supplementary information

https://doi.org/10.1038/s44284-025-00233-x

Declining short-term emission control opportunity for major events in Chinese cities

In the format provided by the authors and unedited

1 SUPPLEMENTARY MATERIALS

- 2 Supplementary Texts:
- 3 1. Uncertainty analyses of NO_X emission inversion
- 5 Supplementary Figs. S1 to S19
- 6

- 7 Supplementary Tables S1 to S12
- 8

9 Supplementary Text 1: Uncertainty analyses of NO_X emission inversion

10 **The "smearing" effect**

For the "top-down" emission inversion, "smearing" effect exists in the mass balance method when correcting the NO_X emissions according to the difference between observed and simulated NO_2 TVCDs in every single grid. It resulted mainly from the insufficient consideration of the regional transport of NO_2 in the NO_X emission inversion, and possibly leads to underestimation in local emissions and overestimation in downwind emissions.

To evaluate the uncertainty from "smearing" effect, we conducted an extra 17 sensitivity test for estimating the a posterior NO_x emissions for the major events, with 18 19 the same simulation domain as the normal case (Domain 2 in Supplementary Figure 20 S2) but a coarser horizontal resolution of 27×27 km. Supplementary Table S7 shows the comparison of the a posterior NO_X emissions in normal and sensitivity case, 21 indicated by the correlation coefficient (R), NMB and NME between the two 22 estimates. The strong coefficients and small NMEs for all the major events suggest a 23 limited effect of horizontal resolution and thereby "smearing" effect on emission 24 inversion. 25

26

27 The sensitivity test of sector-level emission decomposition

The uncertainty of sector-level emission estimation was tested by changing the criterion of defining the main emission sectors of the grid cells. In the normal case, we defined a sector as the main sector for individual simulation grid cell if it accounted for more than 50% of total emissions (Methods). Here we changed the criterion to 40% and 60%, and repeated the decomposition of sector-level emissions respectively.

Supplementary Table S8 shows the comparison of the inversed sector-level emissions with different criteria, indicated by R, NMB and NME between different estimates. The large R (>0.8 for most cases) and small NMEs (<20%) suggest the uncertainty from changing criterion of defining main emission sectors was moderate.

38

39 The sensitivity test of β (response of NO₂ TVCDs to changing NO_X emissions)

When estimating the response of NO₂ TVCDs to changing NO_x emissions, we applied a 10% perturbation in NO_x emissions (Methods and Eq. 6). To test this uncertainty, we changed the NO_x emission perturbation from 20% to 60%, and repeated the NO_x emission inversion for 2014 NMD as an example. As shown in Supplementary Table S12, the variability of β with emission perturbation ranging 20%-60% was within 10%, compared to that with emission perturbation of 10%. Therefore, the value of β was not sensitive to varying emission perturbation.

48 Supplementary Figures

Fig. S1. Host and neighboring cities of the major events in the YRD region. We 49 defined neighboring cities as one that borders the host city. The darker colors (green, 50 blue, orange) represent host cities (Nanjing, Shanghai, and Hangzhou), and the lighter 51 colors represent neighboring cities. The map data are provided by the Resource and 52 Environment Science and Data Center © Institute of Geographic Sciences and Natural 53 Resources Research, Chinese Academy of Sciences 54 (https://doi.org/10.12078/2023010103, 2023). 55

NJ: Nanjing

CZ: Chuzhou MAS: Ma'Anshan WH: Wuhu XC: Xuancheng CZ': Changzhou WX: Wuxi ZJ: Zhenjiang TZ: Taizhou YZ: Yangzhou

SH: Shanghai

NT: Nantong SZ: Suzhou JX: Jiaxing NB: Ningbo

HZ: Hangzhou

XC: Xuancheng HS: Huangshan QZ: Quzhou JH: Jinhua SX: Shaoxing JX: Jiaxing HZ': Huzhou

Fig. S2. Modeling domain of WRF-CMAQ and the locations of meteorological, 58 air quality, and MAX-DOAS measurement stations in YRD. A nested WRF-59 CMAQ model is applied at the horizontal resolution of 27×27 km (Domain 1) and 9 60 \times 9 km (Domain 2). Domain 1 provided initial and boundary fields for Domain 2, 61 where the NO_X emissions were inversed. The MAX-DOAS measurements were 62 63 available at monthly level in Hefei (117.16°E, 31.91°N), Nanjing (118.95°E, 32.118°N) and Shanghai (120.98 °E, 31.09°N), and at daily level in Xuzhou (117.14° 64 E, 34.22° N). The map data are provided by the Resource and Environment Science 65 and Data Center © Institute of Geographic Sciences and Natural Resources Research, 66 Chinese Academy of Sciences (https://doi.org/10.12078/2023010103, 2023). 67

68

Fig. S3. The spatial distribution of standard deviations of NO₂ TVCDs in POMINO and RETOMI2, and the difference between them during the main control periods of major events. The horizontal resolution is $0.05^{\circ} \times 0.05^{\circ}$ (Original POMINO data were downscaled by bilinear interpolation). The map data are provided by the Resource and Environment Science and Data Center © Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (https://doi.org/10.12078/2023010103, 2023).

Fig. S4. Monthly temporal variation of NO₂ TVCDs from satellite data 80 (RETOMI2 and POMINO) and ground-based observations from MAX-DOAS at 81 Hefei (117.16°E, 31.91°N; from January 2014 to December 2016, red curves with 82 dots), Nanjing (118.95°E, 32.118°N; from October 2015 to December 2016, blue 83 curves with dots) and Shanghai (120.98 °E, 31.09°N; from April to December 84 85 2016, green curves with dots).

87

Fig. S5. Interannual trends of NO_x emissions from MEIC during 2008-2020 for YRD (A, E), Shanghai (B, F), Nanjing (C, G) and Hangzhou (D, H). The black dotted lines represent annual total NO_x emissions. The red, green and light blue bars represent the emissions from industrial, power and transportation sectors, respectively. The red, green and light blue dotted lines indicate the relative change in emissions from 2008 for the industry, electricity and transportation sectors, respectively.

С в D A Shangha Nanjing total em industry power transpor total em industry power transport total em industry power transpor Hangzhou total e indust power transp 7000 700 700 700 1.4 = 600 600 600 6000 (Kt) 1.2 1.2 1.2 5000 500 500 500 4000 4000 3000 2000 400 1.0 300 300 300 200 200 100 100 0 **G** 1.6 E 1.6 H 1.6 F YRD Shangha Nanjing industry
 power
 transpor Hangzho - industry power + industry power : 1.4 1.4 1.4 1.4 Relative Change (Normalized to 2008) 90 00 10 10 10 1.2 1.2 1.2 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 2010 2012 2014 2016 2018 2020 Vear 2012 2014 2016 2018 2020 vear 2008 2010 2012 2014 2016 2018 2020 Vear 2010 2012 2014 2016 2018 2020 95

Fig. S6. Daily variation of observed surface NO₂ concentration in Nanjing in
August 2013 and August 2014. The data for August 2013 and August 2014 are
indicated in blue and orange respectively. Observations during the event are indicated
with red dots.

Fig. S7. Difference of simulated hourly mean meteorological conditions during 103 the 2013 AYG and 2014 YOG. Difference is indicated as meteorological factors 104 on 16-28 August 2013 minus meteorological factors on 16-28 August 2014. (A) 105 Temperature at 2m (T2), (B) Relative humidity (RH) at 2m, (C) Planetary boundary 106 layer height (PBLH), (D) Surface pressure (SP), (E) Wind speed and direction at 10-107 meter in 2013 AYG, (F) Wind speed and direction at 10-meter in 2014 YOG. The 108 boxes in the upper right corner show the bias of mean value (A-D) or the mean value 109 of wind speed (E, F). The black box in each plot shows the location of Nanjing. The 110 map data are provided by the Resource and Environment Science and Data Center © 111 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy 112 of Sciences (https://doi.org/10.12078/2023010103, 2023). 113

Fig. S8. Time series of daily observed concentrations of air pollutants (SO₂, NO₂, CO, O₃, PM_{2.5} and PM₁₀), meteorological parameters (temperature, rainfall, wind speed at 10-meter, relative humidity, sunshine duration and PBLH) and the a NO_x posterior emissions in Hangzhou from August to September 2016. The red shade indicates the G20 summit period (Sep. 4 - Sep. 5, 2016). The grey shade indicates Phase II (Aug. 28 - Sep. 6, 2016) in main control period of 2016 G20.

Fig. S9. The timeline of major events and long-term air pollution prevention actions and mechanisms.

Fig. S11. Daily variation of the share of soil to total NO_x emissions (%) for different events in YRD. (A) 2010 EXPO, 2013 AYG and 2014 YOG conducted in August; (B) 2016 G20 and 2023 AG conducted in September.

133 Fig. S12. Scatterplot of historical NO₂ TVCDs from POMINO-TROPOMI and

134 **RETOMI (Jul.1, 2018 to Dec. 31, 2020).** The slope and intercept were applied to adjust POMINO-TROPOMI data during the simulation period of 2023 AG.

Fig. S13. Scatterplot of historical averaging kernels of RETOMI (REAK) and
POMINO-TROPOMI (Jul.1, 2018 - Dec. 31, 2020). The slope and intercept were
applied to adjust the AKs of POMINO-TROPOMI during the simulation period of
2023 AG.

Fig. S14. Scatterplot of NO₂ TVCDs from REOMI and POMINO (left and right 144 panels for each year indicate the training and validation dataset, respectively). 145

147

Fig. S15. Scatterplot of NO₂ TVCDs from RETOMI and POMINO-TROPOMI
 (left and right panel indicate the training and validation dataset, respectively).

150 151

Fig. S16. Scatterplot of REAK and POMINO-TROPOMI AKs (left and right
 panels indicate train and test dataset, respectively).

Fig. S17. The influence of Expected Error (*RMSE*) by number of EOFs modes (*P*) in DINEOF. Take a specific event (2014 NMD) as an example. P_b is the specific number of EOFs modes set to meet a condition where the *RMSE* change is less than 1%. In this case, P_b was set as 56 (*RMSE*=0.923), the change in *RMSE* between *P*=56 and *P*=55 is less than 1%.

163 Fig. S18. The spatial distribution of β (the sensitivity of NO₂ TVCDs to changing 164 NO_x emissions) at YRD region during main control period of major events.

Fig. S19. Scatterplot of NO₂ TVCDs from RETOMI2 and WRF-CMAQ
 simulation by month.

S21

173 Supplementary Tables

174	Table S1. The bottom-up	(MEIC) and the a	posterior NO _X	emissions (units:	Gg NO _X) an	nd the relative	difference (Diff	f) between them in
-----	-------------------------	------------------	---------------------------	-------------------	-------------------------	-----------------	------------------	--------------------

175 **YRD during the simulation period of the 11 major events.**

E 4	YRD (Gg NO _X)			Host city (Gg NO _X)				
Event –	MEIC	The a posterior	Diff	City	MEIC	The a posterior	Diff	
2010 EXPO	5651	4714	-17%	Shanghai	351	250	-41%	
2013 AYG	1798	1608	-11%	Nanjing	48	38	-24%	
2014 YOG	1628	1467	-10%	Nanjing	46	34	-33%	
2014 NMD	1078	764	-29%	Nanjing	30	20	-47%	
2015 NMD	1022	777	-24%	Nanjing	28	18	-53%	
2016 G20	980	773	-21%	Hangzhou	27	20	-33%	
2016 NMD	1432	1321	-8%	Nanjing	40	34	-17%	
2018 CIIE	844	792	-6%	Shanghai	46	40	-15%	
2019 CHE	838	746	-11%	Shanghai	49	34	-46%	
2020 CIIE	848	748	-12%	Shanghai	50	35	-44%	
2023 AG	1361	1162	-15%	Hangzhou	42	35	-21%	

176 **Table S2. The model performance of surface NO_2 concentration with the a** 177 **posterior emissions and the bottom-up estimates (MEIC).** Numbers in red indicate 178 that the simulation of the a posteriori emission performed better than MEIC. The 179 evaluation period was the main control period of major events.

Event	Emission data	Observation mean (YRD)	Simulation Mean (YRD)	R	NMB	NME
2014 VOC	MEIC	20.21	51.16	0.75	76.50	76.73
2014 100	Posterior	29.21	37.11	0.75	1.05	27.35
2014 NMD	MEIC	18 02	63.81	0.75	32.89	34.11
2014 INIMD	Posterior	40.02	37.97	0.81	-20.93	23.26
2015 NMD	MEIC	12 12	61.40	0.69	43.86	43.94
2013 INIVID	Posterior	45.15	38.53	0.67	-10.67	22.28
2016 C 20	MEIC	22.62	39.98	0.68	75.98	77.25
2010 G20	Posterior		24.01	0.70	6.14	34.85
2016 NMD	MEIC	47.08	59.14	0.68	25.62	29.22
2010 101010	Posterior	47.08	38.05	0.62	-19.18	26.43
2018 CHE	MEIC	37 30	54.54	0.69	46.14	46.89
2010 CHE	Posterior	51.52	32.40	0.78	-13.17	19.99
2010 CHE	MEIC	36 12	52.24	0.80	43.46	44.56
2019 CHE	Posterior	30.42	37.74	0.84	3.62	21.04
2020 CHE	MEIC	34 67	49.86	0.73	43.78	45.21
2020 CHE	Posterior	54.07	37.19	0.82	7.24	20.47
2023 A.C.	MEIC	27.29	43.28	0.84	58.58	59.75
2023 AG	Posterior	21.29	30.20	0.86	10.66	12.42

180

Event	Emission	Observation	Simulation	R	NMR	NME
Event	data	mean (YRD)	mean (YRD)	N		
2014 VOC	MEIC	14 61	68.70	0.24	55.48	80.20
2014 100	Posterior	44.01	62.78	0.29	54.02	64.53
2014 NMD	MEIC	72 62	81.58	0.45	14.41	36.26
2014 INIVID	Posterior	12.02	79.34	0.74	9.26	18.95
2015 NMD	MEIC	104 16	96.28	0.64	-8.01	33.00
2013 INIVID	Posterior	104.10	97.93	0.66	-5.98	32.79
2016 (220	MEIC	20.15	33.98	0.45	16.54	37.13
2010 620	Posterior	29.13	32.35	0.44	10.95	34.71
2016 NMD	MEIC	80.42	77.60	0.50	-6.71	33.86
2010 INIVID	Posterior	00.42	72.64	0.58	-9.68	25.84
2018 CHE	MEIC	40.65	46.28	0.77	-6.78	13.81
2010 CHE	Posterior	49.05	46.00	0.77	-6.55	13.11
2010 CHE	MEIC	15 67	58.88	0.69	28.94	44.44
2019 CHE	Posterior	45.07	58.58	0.70	28.28	43.71
2020 CHE	MEIC	30.50	48.76	0.35	23.18	40.46
2020 CHE	Posterior	39.39	49.04	0.36	23.87	40.96
2023 A.C	MEIC	30.34	33.87	0.45	16.54	37.13
2023 AG	Posterior	50.54	32.61	0.44	10.95	34.71

Table S3. The same as Table S2 but for $PM_{\rm 2.5}$ simulation. 182

183

Event	Emission data	Observation mean (YRD)	Simulation mean (YRD)	R	NMB	NME
2014 VOC	MEIC	<u> </u>	56.09	0.87	-14.68	23.15
2014 I UG	Posterior	03.75	72.56	0.88	9.68	22.12
2014 NIMD	MEIC	70.95	60.15	0.85	-15.11	23.14
2014 INIVID	Posterior	70.85	70.75	0.85	-0.14	22.36
2015 NMD	MEIC	17 12	22.22	-0.44	-52.84	62.56
2015 MND	Posterior	47.15	47.41	0.85	55.81	56.54
2016 (220	MEIC	20.47	19.20	0.72	-37.00	40.11
2010 G20	Posterior	50.47	44.98	0.74	48.09	52.98
2014 NIMD	MEIC	25.95	24.51	0.71	-31.62	38.10
2010 INIVID	Posterior	55.65	45.84	0.77	27.87	36.77
2018 CHE	MEIC	11 95	36.54	0.77	-18.53	32.42
2018 CHE	Posterior	44.83	44.37	0.72	-1.08	32.81
2010 CHE	MEIC	16.07	43.99	0.86	-4.53	25.06
2019 CHE	Posterior	40.07	54.41	0.88	18.09	27.06
2020 CHE	MEIC	45.07	33.99	0.84	-24.57	31.94
2020 CHE	Posterior	43.07	49.08	0.87	8.90	23.62
2022 1 C	MEIC	60.01	68.40	0.84	-0.87	23.13
2023 AG	Posterior	09.01	69.08	0.85	0.10	22.16

Table S4. The same as Table S2 but for O₃ simulation.

S25

Event	Main control period	Specific measures
2010 EXPO	Apr. 1 - Oct. 1, 2010	 Point sources: All coal-fired boilers, power plants and key industrial factories within a 300-kilometer radius of the Expo site were under priority control. Clean power generation took priority during high pollution period. Area sources: Waste straw burning and construction dust emissions were strictly controlled. Mobile sources: High-emission vehicles were eliminated or restricted from entering the Expo venue. Zero-emission public transportation systems and tightened vehicle emission standards were implemented.
2013 AYG	Aug. 1 - Aug. 30, 2013	 Point sources: Nearly 60 heavy industrial factories were shut down. Power generation was reduced. The use of coal-fired boilers was prohibited. Area sources: The work at all construction sites was stopped. The control of restaurant fume emissions was strengthened. Road cleaning was strengthened. Mobile sources: High-emission vehicles were banned from the city.
	Phase I: Sep. 15 - Sep. 31, 2014	 Point sources: All coal-fired factories were shut down. Area sources: The work on one-third of construction sites was stopped. Mobile sources: The parking fees in downtown increased sevenfold.
2014 YOG	Phase II: Aug. 1 - Aug. 30, 2014	 Point sources: Twenty percent of manufacturing was reduced for heavy industrial factories. Area sources: The work at all construction sites was stopped (Aug.16-31). Open-air barbecue was stopped. Mobile sources: High-emission vehicles were banned from entering the city. In total 900 electric buses and 500 taxis were put into operation.
2014 NMD	Nov. 17 - Dec. 17, 2014	 Point sources: The removal efficiencies of air pollutant control facilities were elevated, including gas desulphurization, selective catalytic reduction, and dust collectors. A number of heavy industrial factories were shut down. Area sources: The work at all construction sites was stopped. Road cleaning was strengthened. Mobile sources: All yellow-labeled and highemission vehicles were banned from entering the city. Thirty percent of government vehicle use was stopped.

188	Table S5.	The short-term	emission	control mea	sures for th	e major events.
-----	-----------	----------------	----------	-------------	--------------	-----------------

189 **Table S5. (Continued Table)**

Event	Main control period	Specific measures
2015 NMD	Dec. 7 - Dec. 15, 2015	 Point sources: The removal efficiencies of air pollutant control facilities were elevated. Thirty-one heavy industrial factories were shut down. Key factories reduced manufacturing by 30%. Area sources: The work at all construction sites was stopped. Road cleaning was strengthened. Mobile sources: Heavy-duty trucks were prohibited from entering the city. Emergency Control Measures: Special control measures were implemented during the pollution period. Restrictions on manufacturing were elevated for industries. Further measures were taken to control emissions from vehicles, ships, and dust pollution (Dec. 11 - Dec. 13, 2015).
2016 G20	Phase I: Aug. 1 - Aug. 27, 2016	Point sources: Heavy industrial factories were shut down or required to reduce production. Area sources: The work at all construction sites was stopped (Aug. 25 - Sep. 6).
	Phase II: Aug. 28 - Sep. 6, 2016	Point sources: Same as Phase I. Mobile sources: Vehicles from outside Hangzhou were banned from entering the city. Odd-even traffic rule was implemented (Aug. 28 - Sep. 3).
2016 NMD	Dec. 9 - Dec. 13	The same as 2015 NMD.
2018 CIIE	Oct. 27 - Nov. 10	Point sources: The upgrade of coal-fired boilers and production restrictions for key enterprises were
2019 CHE	Oct. 27 - Nov. 10	Area sources: Waste straw burning and construction dust emissions were strictly controlled.
2020 CHE	Nov. 1 - Nov. 10	Road cleaning was strengthened. Mobile sources: The number of on-road vehicles was restricted. Pollution prevention and control of high-emission vehicles and non-road machinery was strengthened.
2023 AG	Sep. 10 – Oct. 8	 Point sources: The removal efficiencies of air pollutant control facilities were elevated. Area sources: Road cleaning was strengthened. Mobile sources: The number of on-road vehicles was restricted. Pollution prevention and control of high-emission vehicles and non-road machinery was strengthened. Emergency Control Measures: Platform was established to detect and track the hotspot of pollution.

Table S6. The simulation periods used to distinguish between meteorological and
emission contributions (P1 and P2). P2 included the full period of main control for
each event, with an exception of 2010 EXPO, for which April 2010 was selected as
P2 to save computational cost. P1 was the period before P2 with the same duration as
P2.

Event	P1	P2
2010 EXPO	Mar. 2 - Mar. 31, 2010	Apr. 1 - Apr. 30, 2010
2013 AYG	Jul. 2 - Jul. 31, 2013	Aug. 1 - Aug. 30, 2013
2014 YOG	May. 28 - Jul. 14, 2014	Jul. 15 - Aug. 31, 2014
2014 NMD	Oct. 17 - Nov. 16, 2014	Nov. 17 - Dec. 17, 2014
2015 NMD	Nov. 28 - Dec. 6, 2015	Dec. 7 - Dec. 15, 2015
2016 G20	Jun. 25 - Jul. 31, 2016	Aug. 1 - Sep. 6, 2016
2016 NMD	Dec. 4 - Dec. 8, 2016	Dec. 9 - Dec. 13, 2016
2018 CIIE	Oct. 12 - Oct. 26, 2018	Oct. 27 - Nov. 10, 2018
2019 CIIE	Oct. 12 - Oct. 26, 2019	Oct. 27 - Nov. 10, 2019
2020 CIIE	Oct. 22 - Oct. 31, 2020	Nov. 1 - Nov. 10, 2020
2023 AG	Aug. 12 - Sep. 9, 2023	Sep. 10 - Oct. 8, 2023

196Table S7 Comparison of the a posteriori emissions inversed at two horizontal197resolutions (27×27 km and 9×9 km) during the main control periods of the 11

198 major events.

Event	R	NMB (%)	NME (%)
2010 EXPO	0.86	1.21	4.04
2013 AYG	0.95	-0.20	1.39
2014 YOG	0.91	0.89	2.88
2014 NMD	0.89	-0.07	2.28
2015 NMD	0.87	0.64	4.57
2016 G20	0.91	0.50	3.15
2016 NMD	0.93	0.78	2.93
2018 CIIE	0.98	0.49	2.24
2019 CIIE	0.85	0.99	3.07
2020 CIIE	0.91	-0.28	1.85
2023 AG	0.96	1.36	4.26

199 200

S29

Table S8. Variability in the a posterior NO_x emissions at the sector level with different criteria to identify the main emissions sector for individual grid cells. Comparisons were conducted between the estimates with a criterion of 40% and 50%, and between the estimates with a criterion of 60% and 50% (see explanation of the criterion in Supplementary Texts).

E-ror4	Sector	4	0% versus 5	50%	60% versus 50%			
Event	Sector	R	NMB (%)	NME (%)	R	NMB (%)	NME (%)	
2010	Industry	0.91	-3.61	8.64	0.96	-8.25	8.93	
2010 EXDO	Power	0.95	3.38	9.18	0.96	15.69	15.81	
EAFU	Transportation	0.98	0.97	3.19	0.97	-8.00	8.95	
2012	Industry	0.93	-1.38	2.57	0.89	0.12	2.56	
AVG	Power	1.00	0.08	0.51	0.99	0.25	1.32	
AIU	Transportation	0.98	0.64	1.12	0.98	-0.14	1.05	
2014	Industry	0.98	0.43	1.20	0.95	3.69	3.94	
2014 VOG	Power	1.00	-0.21	0.45	1.00	0.38	1.16	
100	Transportation	1.00	-0.21	0.61	0.98	-2.32	2.46	
2014	Industry	0.99	-0.21	2.63	0.98	-3.71	4.72	
2014 MMD	Power	1.00	0.13	0.85	0.99	-3.64	3.70	
INIMD	Transportation	1.00	0.04	1.48	0.99	3.31	3.81	
2015	Industry	0.99	0.87	2.58	0.97	-1.03	5.87	
2015 NMD	Power	0.99	1.27	2.24	0.98	-6.35	6.54	
NND	Transportation	1.00	-0.59	1.32	0.99	2.63	4.31	
2016	Industry	0.99	0.04	3.89	0.99	-5.39	6.28	
2010 NMD	Power	1.00	-0.76	2.11	1.00	-2.71	3.12	
	Transportation	1.00	0.10	2.02	1.00	3.73	3.87	
2016	Industry	0.96	0.71	1.53	0.43	17.50	17.50	
C^{2010}	Power	0.99	0.48	0.85	0.94	-11.61	11.61	
020	Transportation	1.00	-1.08	1.46	0.92	-19.10	19.10	
2018	Industry	0.96	4.25	4.25	0.92	0.12	2.07	
CIIE	Power	0.99	-3.60	3.60	0.98	0.02	1.42	
CIIL	Transportation	0.91	-2.77	2.86	0.97	-0.16	1.31	
2010	Industry	0.90	7.61	8.84	0.92	5.69	7.83	
CIIE	Power	0.86	-12.04	14.67	0.95	-3.36	4.75	
CIIL	Transportation	0.92	0.07	6.17	0.97	-3.44	4.67	
2020	Industry	0.82	14.01	14.52	0.85	1.39	8.40	
CIIE	Power	0.93	-15.64	15.64	0.92	-0.55	4.00	
CHE	Transportation	0.85	-2.35	8.91	0.98	-0.68	3.55	
2023	Industry	1.00	1.43	1.48	0.94	4.12	4.39	
2025 AG	Power	1.00	-0.24	0.68	0.96	-1.69	2.76	
AU	Transportation	1.00	-1.33	1.33	0.97	-3.23	3.48	

Table S9. Summary of data used in REOMI development (Step 1). POMINO and GOME-2 data were resampled to $0.25^{\circ} \times 0.25^{\circ}$ through Level-2 products. Other ancillary data in this table were downscaled to the same horizontal resolution of 0.25° $\times 0.25^{\circ}$ by bilinear interpolation. POMINO was the target variable of the model (green shade).

Data type	Variable	Abbreviation	Unit	Period	
POMINO	NO ₂ TVCDs	pomino	molec. cm ⁻²	2010, 2013-2016, 2018-2020	
GOME-2a	NO ₂ TVCDs	gome	molec. cm ⁻²	2010	
GOME-2b	NO ₂ TVCDs	gome	molec. cm ⁻²	2013-2016, 2018-2020	
	2m temperature	t2m	Κ		
	Boundary layer height	blh	m		
	100-meter eastward wind	u100	$m s^{-1}$		
	100-meter northward wind	v100	$m s^{-1}$		
	10-meter eastward wind	u10	$m s^{-1}$		
Meteorology	10-meter northward wind	v10	$m s^{-1}$		
<i>6</i> v	Surface pressure	sp	hPa		
	Total column ozone concentration	tco3	du		
	2-meter dew point temperature	d2m	K		
	Total Trop. column water	tcw	g cm ⁻²	2010	
	Total column water vapor	tcwv	g cm ⁻²	2013-2016,	
Socio-economic	Gridded population	рор	people/grid	2018-2020	
	Proportion of crop	cropland	%		
Land use	Proportion of impervious surface	impervious surface	%		
	Proportion of water	water	%		
	Proportion of forest	forest	%		
	Longitude	lon	0		
Spatiotemporal	Latitude	lat	0		
information	Day of year	doy	-		
	Day of week	dow	-		

212 Table S10. Summary of data used in RETOMI development (Step 2). POMINO-

213 TROPOMI data were resampled to $0.05^{\circ} \times 0.05^{\circ}$ through level-2 products. Other data

214 were downscaled to the same horizontal resolution of $0.05^{\circ} \times 0.05^{\circ}$ by bilinear

215 interpolation. POMINO-TROPOMI was the target variable (green shade).

Data type	Variable	Abbreviation	Unit	Period
POMINO- TROPOMI	NO ₂ TVCDs	tpomino	molec. cm ⁻²	
REOMI	Reconstructed NO ₂ TVCDs	reomi	molec. cm ⁻²	
	2m temperature	t2m	Κ	
	Boundary layer height	blh	m	
	100-meter eastward wind	u100	$m s^{-1}$	
	100-meter northward wind	v100	$m s^{-1}$	
	10-meter eastward wind	u10	$m s^{-1}$	
Meteorology	10-meter northward wind	v10	$m s^{-1}$	
	Surface pressure	sp	hPa	July 2018-Dec.
	Total column ozone concentration	tco3	du	2020 for training XGBoost model; 2010, 2013-2016, and 2018-2020 for predicting RETOMI2 based on trained XGBoost model
	2-meter dew point temperature	d2m	Κ	
	Total Trop. column water	tcw	g cm ⁻²	
	Total column water vapor	tcwv	g cm ⁻²	
Socio-economic	Gridded population	рор	people/grid	
Land use	Proportion of crop	cropland	%	
	Proportion of impervious surface	impervious surface	%	
	Proportion of water	water	%	
	Proportion of forest	forest	%	
Spatiotemporal information	Longitude	lon	0	
	Latitude	lat	o	
	Day of year	doy	-	
	Day of week	dow	-	
216				

217

Table S11. Summary of data used for AKs estimation. POMINO-TROPOMI data
were resampled to 0.05°×0.05° through level-2 products. Other data were downscaled
to the same horizontal resolution of 0.05°×0.05° by bilinear interpolation. POMINOTROPOMI was the target variable (green shade).

Data type	Variable	Abbreviation	Unit	Period	
POMINO- TROPOMI	Daily averaging kernels	tpomino-ak	Unitless		
POMINO	Daily averaging kernels	pomino-ak	Unitless	- - - 	
	2m temperature	t2m	K		
	Boundary layer height	blh	m		
	100-meter eastward wind	u100	m/s		
	100-meter northward wind	v100	m/s		
	10-meter eastward wind	u10	m/s		
Meteorology	10-meter northward wind	v10	m/s		
	Surface pressure	sp	hPa		
	Total column ozone concentration	tco3	du		
	2-meter dew point temperature	d2m	К	Dec. 2020 for	
	Total Trop. column water	tcw	g/ cm ²	training XGBoost model;	
	Total column water vapor	tcwv	g/ cm ²		
Socio-economic	Gridded population	рор	people/grid	2010, 2013- 2016 and	
	Proportion of crop	cropland	%	2018-2020 for	
I and use	Proportion of impervious surface	impervious	%	predicting	
Lanu use	Proportion of water	water	%	on trained	
	Proportion of forest	forest	%	XGBoost	
	Longitude	lon	0	moder	
Spatiotemporal	Latitude	lat	0		
information	Day of year	doy	-		
	Day of week	dow	-	_	
Satellite variables	Relative azimuth angle	relazm	0		
	Solar zenith angle	sza	0		
	Viewing zenith angle	vza	0		
	Aerosol optical depth	aod	Unitless		
	Single scattering albedo	ssa	Unitless		
	Effective cloud fraction	cldf	Unitless		
	Cloud radiation fraction	wcld	Unitless		

Data type	Variable	Abbreviation	Unit	Period
	NO ₂ Trop. air quality factor	amf	Unitless	
	NO2 Trop. air quality factor (clear-sky)	amfclr	Unitless	July 2018-Dec. 2020 for training XGBoost model; 2010, 2013- 2016, and 2018- 2020 for predicting REAK based on trained XGBoost model
	NO ₂ Trop. air quality factor (cloudy-sky)	amfeld	Unitless	
Satellite variables	Temperature of each layer	temp	К	
	Tropopause pressure	troppt	hPa	
	Effective cloud pressure	cldp	hPa	
	Air pressure of each layer	pres	hPa	
	Surface pressure	spin	hPa	
224				

Table S11. (Continued Table)

- Table S12. The variability of β with different levels of emission perturbation,
- relative to the value with a 10% perturbation of NO_X emissions for 2014 NMD.

Perturbation of NO _X emissions	The variation of β relative to a 10% perturbation
20%	4.04%
30%	5.82%
40%	6.96%
50%	8.03%
60%	9.34%
228	